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Abstract

With the growing demand for decentralized and patient-centric healthcare, Diagnostic Internet of Things (D-IoT)
systems have emerged as a promising solution for continuous health monitoring in home environments. However,
existing architectures often rely on cloud-based processing, which introduces latency, power inefficiencies, and
privacy concerns, particularly in real-time diagnostic scenarios. This paper proposes a novel edge-centric signal
processing framework designed for ultra-low-power, on-device physiological monitoring using wearable IoT devices.
The framework integrates real-time denoising using wavelet transforms and adaptive filtering, hybrid feature
extraction across time, frequency, and nonlinear domains, and dimensionality reduction via Principal Component
Analysis (PCA). Lightweight AI models, including 1D-CNNs and TinyLSTM, are deployed directly on
microcontroller-class hardware, enabling accurate anomaly detection with <50 ms latency and <20 mW power usage.
The system was evaluated across four benchmark datasets—MIT-BIH Arrhythmia, Sleep-EDF, PPG-DaLiA, and
AudioSet—demonstrating high diagnostic accuracy, robustness under noisy conditions, and operational feasibility on
embedded platforms. Compared to cloud-dependent solutions, this edge-centric approach ensures real-time
responsiveness, data privacy, and long-term battery efficiency. The results validate the viability of performing
clinically meaningful diagnostics directly on wearable devices, marking a critical advancement toward intelligent,
autonomous, and accessible home-based healthcare.
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1. Introduction
The increasing global demand for personalized and accessible healthcare has driven a shift toward
home-based diagnostic solutions, particularly in light of the rising burden of chronic diseases and
aging populations [1]. Within this evolving landscape, the Diagnostic Internet of Things (D-IoT)—
which integrates wearable sensors, embedded edge processors, and cloud connectivity—offers a
transformative opportunity to continuously monitor physiological health parameters such as
electrocardiograms (ECG), photoplethysmograms (PPG), respiratory patterns, and acoustic signals
from the comfort of patients’ homes [2][3]. Despite this promise, the deployment of D-IoT in real-
world, non-clinical environments remains technically challenging. Physiological signals captured at
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home are often contaminated by noise from motion artifacts, poor electrode contact, ambient
interference, and daily activity, which compromise signal fidelity and diagnostic accuracy [4][5].
Compounding this, the traditional reliance on cloud-based data processing introduces significant
latency, increases bandwidth consumption, and raises serious concerns about data privacy and
reliability—issues that are particularly critical in health monitoring applications where
responsiveness and confidentiality are paramount [6]. As such, there is a critical unmet need for D-
IoT systems that can process and interpret physiological signals locally, directly on the device,
without depending on continuous cloud access. While several prior works have explored remote
health monitoring using mobile apps or wearables with centralized analytics, few have addressed the
integration of robust, noise-resilient signal processing pipelines with real-time machine learning on
resource-constrained embedded platforms [7][8]. To fill this gap, the present study introduces an
edge-centric framework for signal-aware diagnostic intelligence, designed specifically for ultra-low-
power home-based IoT settings. The proposed system incorporates a five-stage pipeline: (1) real-
time denoising using wavelet transforms and adaptive filtering to mitigate noise and artifacts, (2)
window-based signal segmentation and normalization, (3) multimodal feature extraction across time,
frequency, and nonlinear domains, (4) dimensionality reduction via Principal Component Analysis
(PCA), and (5) low-latency inference using quantized models such as 1D-CNNs and TinyLSTM,
deployed on microcontroller-class hardware with <128 KB memory and <20 mW power usage. The
primary objectives of this work are fourfold: first, to design a preprocessing system capable of
enhancing signal quality under realistic home noise conditions; second, to extract and compress
diagnostically relevant features for efficient inference; third, to implement lightweight AI models
tailored for on-device decision-making; and fourth, to validate the system across public datasets (e.g.,
MIT-BIH, Sleep-EDF, PPG-DaLiA, AudioSet) and real embedded platforms in terms of diagnostic
accuracy, signal-to-noise ratio (SNR) improvement, inference latency, and energy consumption.
Ultimately, this research demonstrates that clinically meaningful health diagnostics are achievable
using compact, privacy-preserving signal processing directly at the edge—without compromising
reliability, interpretability, or user convenience.

2. Literature Review

The integration of edge computing into healthcare systems has been extensively explored to address
challenges related to latency, bandwidth, and data privacy. Edge-centric architectures enable real-
time data processing close to the data source, which is crucial for time-sensitive health monitoring
applications. For instance, Swathi et al. [9] proposed an edge-centric IoT health monitoring
framework that optimizes real-time responsiveness, data privacy, and energy efficiency. Their
approach emphasizes the importance of processing health data at the edge to reduce latency and
enhance patient privacy.

In the realm of lightweight AI models for physiological monitoring, several studies have focused on
developing efficient algorithms suitable for resource-constrained devices. Giordano et al. [10]
introduced SepAl, a lightweight neural network designed for real-time sepsis prediction on low-
power wearable devices. Their model leverages photoplethysmography (PPG) and inertial
measurement unit (IMU) data to deliver timely alerts, demonstrating the feasibility of deploying
complex health monitoring algorithms on embedded systems.
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Embedded systems for real-time health diagnostics have also seen significant advancements. Lu et al.
[11] provided a comprehensive review of edge computing applications in machine signal processing
and fault diagnosis, highlighting the potential of edge devices in timely monitoring and preventing
cardiovascular diseases. Their work underscores the importance of combining health informatics
with mobile edge cloud computing to develop efficient ECG devices based on IoT.

Moreover, the development of frameworks that facilitate the deployment of machine learning models
on embedded devices has been pivotal. David et al. [12] introduced TensorFlow Lite Micro, an open-
source machine learning inference framework designed for running deep-learning models on
embedded systems. This framework addresses the efficiency requirements imposed by embedded-
system resource constraints and the fragmentation challenges that hinder cross-platform
interoperability.

Despite these advancements, challenges remain in achieving robust, low-latency, and energy-
efficient health monitoring solutions suitable for deployment in home-based settings. Our work aims
to bridge this gap by proposing a comprehensive edge-centric signal processing framework that
integrates efficient preprocessing techniques, feature extraction, dimensionality reduction, and
lightweight AI models tailored for real-time physiological monitoring on embedded devices.

3. Method

To enable robust diagnostic intelligence in home-based IoT systems, we propose a comprehensive
edge-centric signal processing methodology that spans acquisition, preprocessing, feature extraction,
dimensionality reduction, and lightweight inference. Physiological signals including ECG, PPG,
respiratory motion, and audio (e.g., cough and sleep sounds) are captured using low-power wearable
sensors sampled at rates between 50 Hz and 500 Hz, with synchronized timestamps via BLE or local
NTP services to ensure sub-5 ms temporal alignment. Signal preprocessing involves band-pass
filtering (e.g., 0.5–45 Hz for ECG), notch filtering to suppress power-line interference, and wavelet-
based denoising (e.g., using ‘db6’) to preserve clinically relevant morphological features while
removing motion artifacts, which are further mitigated via adaptive filtering using inertial sensors as
reference signals. Preprocessed signals are segmented into overlapping windows and normalized
using z-score or Min-Max scaling. Feature extraction is then performed across temporal (e.g., RR
intervals, pulse variability, zero-crossing rate), frequency (e.g., Welch PSD, MFCCs), and nonlinear
domains (e.g., sample entropy, Higuchi’s fractal dimension), producing a compact, high-fidelity
representation of physiological behavior. To reduce on-device memory requirements, we apply
Principal Component Analysis (PCA) offline to identify the most salient features and quantize them
into int8 or float16 format for efficient embedded computation. These features are processed by
lightweight classifiers, including 1D CNNs for sequential signals, decision trees for interpretable
logic, and TinyLSTM models for temporal patterns like apnea, all deployed via TensorFlow Lite
Micro or CMSIS-NN on microcontrollers such as STM32 or nRF52. Compressed models (using
quantization and pruning) are constrained to <128 KB and optimized for inference latencies below
50 ms and power consumption under 20 mW. Classification is executed locally on a sliding window
basis, with anomaly-triggered data logging minimizing transmission load. The pipeline is evaluated
using publicly available datasets (e.g., MIT-BIH Arrhythmia, PhysioNet PPG-DaLiA, Sleep-EDF,
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AudioSet), and benchmarked for diagnostic accuracy, signal-to-noise ratio improvements, real-time
responsiveness, and energy efficiency, ensuring its viability for long-term, privacy-preserving home
diagnostics. The proposed signal processing pipeline consists of five key stages, including
acquisition, preprocessing, feature extraction, dimensionality reduction, and lightweight inference, as
illustrated in Figure 1.

Figure 1. Signal processing pipeline for physiological data analysis using wearable sensors and embedded
machine learning inference.

4. Results
The proposed edge-centric signal processing pipeline was implemented and evaluated across
multiple physiological modalities using publicly available datasets and emulated home-based
deployment environments. Our objective was to assess the framework’s performance in terms of
diagnostic accuracy, signal enhancement, computational latency, and energy efficiency on embedded
IoT platforms.

4.1 Dataset and Evaluation Setup
We conducted experiments using four benchmark datasets: (1) MIT-BIH Arrhythmia Database for
ECG classification, (2) PPG-DaLiA for PPG-based activity monitoring and pulse detection, (3)
Sleep-EDF for respiratory-based sleep stage and apnea detection, and (4) AudioSet-Cough Subset for
audio-based anomaly detection. All signals were down sampled to target embedded-compatible
sampling rates (100–250 Hz) and segmented into fixed-length windows (5 seconds, 50% overlap).
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Evaluation metrics included classification accuracy, signal-to-noise ratio (SNR) gain, processing
latency, and power consumption during inference.

4.2 Signal Denoising Performance
To evaluate preprocessing efficiency, we applied the proposed filtering pipeline to noisy ECG and
PPG signals simulated with motion artifacts and Gaussian noise (SNR = 5 dB baseline). Wavelet-
based denoising (using 'db6') and adaptive filtering improved ECG signal SNR from 5.1 dB to 18.3
dB and PPG from 4.8 dB to 15.7 dB, outperforming traditional FIR filters by 6–8 dB on average.
These improvements enabled reliable peak detection, with R-peak detection precision exceeding
96% post-denoising.

Fig. 2. Denoised ECG segments before and after wavelet-based filtering.

Figure 2 above shows ECG signal before (noisy) and after (clean) wavelet denoising, showing
artifact removal and figure 3 Bar graph comparing SNR gains of the proposed method (higher) vs.
traditional FIR filters.

Fig. 3. SNR comparison between baseline FIR filtering and proposed method.
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4.3 Feature Representation and Classification Accuracy

Using the extracted feature set (time, frequency, nonlinear), PCA reduced the dimensionality from
24 to 8 principal components, retaining 95% variance. On this reduced set, lightweight models were
trained and deployed. The 1D-CNN model achieved 97.1% accuracy on MIT-BIH ECG
classification with <45 ms inference latency on the STM32F4 MCU. For apnea detection on Sleep-
EDF, the TinyLSTM model achieved 93.5% F1-score, outperforming traditional SVM classifiers by
5%. Audio-based cough detection using 13-MFCC + Delta features yielded 91.2% classification
accuracy using a pruned Random Forest model.

Fig. 4. Confusion matrix for MIT-BIH classification (CNN, 5-class)

Figure 4 shows Confusion matrix for ECG arrhythmia classification, with 1D-CNN achieving 97.1%
accuracy.

In Figure 5 ROC curves for sleep apnea detection, proving TinyLSTM’s high sensitivity/specificity
(93.5% F1-score).

In Table 1: Performance metrics (accuracy, F1, latency, power) for all models, with sub-20mW
power and >89% accuracy.



The Science Post | www.thesciencepost.com

Volume 1, Issue 2 (June 2025)
Quarterly Published Journal
DOI: https://doi.org/ 10.5281/zenodo.15672504

Fig. 5. ROC curves for apnea detection on Sleep-EDF.

Table 1 Accuracy comparison across classifiers and datasets.

Dataset Model Accuracy (%) F1-score Latency (ms) Power
(mW)

MIT-BIH ECG 1D-CNN 97.1 96.7 42 19

Sleep-EDF TinyLSTM 92.8 93.5 48 21

PPG-DaLiA Decision Tree 89.2 88.4 15 12

AudioSet RF (Pruned) 91.2 90.7 30 14

4.4 Embedded Inference Efficiency

The models were quantized to int8 and deployed using TensorFlow Lite Micro and CMSIS-NN
frameworks. All target models fit within 128 KB flash memory and <32 KB RAM. Inference time
remained under 50 ms per window, with average power consumption under 20 mW, allowing >24
hours of continuous battery-operated operation. Event-based anomaly logging reduced BLE
communication load by 86% compared to full streaming. In figure 6 line plot of inference latency vs.
model size, all sub-50ms on embedded hardware. Figure 7 shows Power consumption graph showing
event-triggered logging cuts transmission energy by 86%.



The Science Post | www.thesciencepost.com

Volume 1, Issue 2 (June 2025)
Quarterly Published Journal
DOI: https://doi.org/ 10.5281/zenodo.15672504

Fig. 6. Inference time vs. model complexity.

Fig. 7. Power profile for continuous and event-based transmission.

5. Discussion
The proposed edge-centric signal processing framework demonstrates significant advancements in
real-time, low-power diagnostic intelligence for home-based IoT settings. By integrating robust
preprocessing techniques, efficient feature extraction, dimensionality reduction, and lightweight AI
models, the system addresses critical challenges in physiological signal monitoring, including noise
resilience, computational efficiency, and energy constraints.

Swathi et al. [13] introduced an edge-centric IoT health monitoring framework that optimizes real-
time responsiveness, data privacy, and energy efficiency. Their approach emphasizes the importance
of processing health data at the edge to reduce latency and enhance patient privacy. Building upon
this, our framework further enhances signal fidelity through advanced denoising techniques and
adaptive filtering, ensuring reliable diagnostics even in noisy home environments.
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Giordano et al. [14] developed SepAl, a lightweight neural network designed for real-time sepsis
prediction on low-power wearable devices. Their model leverages photoplethysmography (PPG) and
inertial measurement unit (IMU) data to deliver timely alerts, demonstrating the feasibility of
deploying complex health monitoring algorithms on embedded systems. Our work extends this
concept by incorporating a broader range of physiological signals, including ECG and respiratory
patterns, and employing a modular architecture that supports various diagnostic applications beyond
sepsis detection.

The integration of Principal Component Analysis (PCA) for dimensionality reduction and the
deployment of quantized models such as 1D-CNNs and TinyLSTM on microcontroller-class
hardware (<128 KB memory and <20 mW power usage) exemplify the system's efficiency.
Evaluations using public datasets (e.g., MIT-BIH, Sleep-EDF, PPG-DaLiA, AudioSet) confirm the
framework's capability to maintain high diagnostic accuracy while operating under stringent resource
constraints.

In summary, this study presents a comprehensive solution that not only aligns with but also advances
current research in edge-based health monitoring. By addressing the limitations of existing systems
and introducing novel methodologies for signal processing and machine learning deployment on
embedded devices, the framework holds significant promise for enhancing personalized healthcare
delivery in home settings.

6. Conclusion
This study presents an integrated, edge-centric framework for real-time physiological signal
processing tailored for diagnostic IoT in home-based health monitoring. The proposed system
successfully addresses major limitations of cloud-reliant models, including latency, power
consumption, and privacy concerns. By incorporating wavelet-based denoising and adaptive filtering,
the framework significantly improves signal quality in noisy, non-clinical environments. The use of
hybrid feature extraction and PCA-based dimensionality reduction enables efficient data
representation without compromising diagnostic relevance. Lightweight AI models such as 1D-
CNNs and TinyLSTM were optimized and deployed on microcontroller platforms, achieving
inference latencies under 50 ms and power consumption below 20 mW. Benchmarking against
publicly available datasets validated the framework’s high classification accuracy and robustness
across multiple modalities. Compared to existing solutions, this work demonstrates superior
adaptability to real-world, resource-constrained environments. The architecture’s modular design
supports scalability across various diagnostic tasks beyond the datasets evaluated. This approach
enables decentralized, continuous health monitoring without reliance on persistent internet
connectivity or high-end hardware. Overall, the framework lays a practical foundation for next-
generation wearable health diagnostics, empowering patients through intelligent, autonomous home-
based care.
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